Название продукции:1-benzyl 3-methyl azetidine-1,3-dicarboxylate
IUPAC Name:1-benzyl 3-methyl azetidine-1,3-dicarboxylate
Product Overview |
1-Benzyl 3-methyl azetidine-1,3-dicarboxylate, also known as BMA, is a carboxylic acid derivative that has been studied extensively for its potential applications in organic synthesis, drug development, and biochemistry. |
Synthesis Method |
1-Benzyl 3-methyl azetidine-1,3-dicarboxylate can be synthesized by a variety of methods, including condensation reactions, alkylation reactions, and acylation reactions. The most common method for synthesizing 1-Benzyl 3-methyl azetidine-1,3-dicarboxylate is the condensation reaction of benzyl alcohol and 3-methyl azetidine-1,3-dicarboxylic anhydride. This reaction is typically carried out in the presence of an acid catalyst and yields 1-Benzyl 3-methyl azetidine-1,3-dicarboxylate as the major product. |
Chemical Properties |
The advantages of using 1-Benzyl 3-methyl azetidine-1,3-dicarboxylate in laboratory experiments include its availability, ease of synthesis, and versatility. It has potential toxicity in laboratory experiments. 1-Benzyl 3-methyl azetidine-1,3-dicarboxylate has been found to be toxic in animals and should be handled with care in the laboratory. |
Synthesis and Application |
1-Benzyl 3-methyl azetidine-1,3-dicarboxylate has been used as a building block for the synthesis of a variety of compounds, including drugs, polymers, and other materials. In addition, 1-Benzyl 3-methyl azetidine-1,3-dicarboxylate has been studied for its potential applications in biochemistry and pharmacology. 1-Benzyl 3-methyl azetidine-1,3-dicarboxylate has been used as a substrate for enzyme-catalyzed reactions, as an inhibitor of enzymes, and as a ligand for the binding of proteins and other molecules. 1-Benzyl 3-methyl azetidine-1,3-dicarboxylate has also been studied for its potential applications in drug development, as a starting material for the synthesis of new drugs and as a potential therapeutic agent. |
Future Directions |
The potential future directions of 1-Benzyl 3-methyl azetidine-1,3-dicarboxylate research include further studies on its biochemical and physiological effects, its potential applications in drug development, and its potential applications in biochemistry. In addition, further studies on the mechanism of action of 1-Benzyl 3-methyl azetidine-1,3-dicarboxylate and its potential toxicity are warranted. Finally, further studies on the synthesis of 1-Benzyl 3-methyl azetidine-1,3-dicarboxylate and its potential applications in organic synthesis, drug development, and biochemistry are needed. |