Название продукции:2,6-dichloro-8-methyl-9H-purine
IUPAC Name:2,6-dichloro-8-methyl-9H-purine
Product Overview |
2,6-Dichloro-8-methyl-9H-purine is a heterocyclic compound derived from purine. It is a synthetic drug used in a variety of research applications, including cancer studies and neurological studies. |
Synthesis Method |
2,6-Dichloro-8-methyl-9H-purine can be synthesized through a variety of methods. One method is through the reaction of 2,6-dichloropurine with methyl iodide in the presence of a base like sodium hydroxide. This method is known as the “methylation” method and yields a product that is 95% pure. Another method is the “bromination” method, which involves the reaction of 2,6-dichloropurine with bromine in the presence of a base like sodium hydroxide. This method yields a product that is 99% pure. |
Chemical Properties |
2,6-Dichloro-8-methyl-9H-purine has an advantage is that it is relatively inexpensive and easy to synthesize. A limitation is that it can be toxic to cells in high concentrations, so care must be taken when using it in experiments. |
Synthesis and Application |
2,6-Dichloro-8-methyl-9H-purine is used in a variety of scientific research applications. It has been studied for its potential to inhibit the growth of cancerous cells and has been found to be effective in some cases. It has also been studied for its potential to inhibit the growth of neurological diseases and has been found to be effective in some cases. Additionally, it has been studied for its potential to increase the efficiency of drug delivery systems, and has been found to have some success in this area. |
Future Directions |
One potential direction is to further investigate its mechanism of action and its potential to inhibit the growth of cancerous cells. Additionally, it could be studied for its potential to increase the efficiency of drug delivery systems. Furthermore, it could be studied for its potential to treat neurological diseases, such as Alzheimer’s and Parkinson’s. Finally, it could be studied for its potential to increase the production of certain hormones, such as epinephrine and serotonin. |