Название продукции:2,2-Difluoro-1,3-benzodioxole

IUPAC Name:2,2-difluoro-2H-1,3-benzodioxole

CAS:1583-59-1
Молекулярная формула:C7H4F2O2
Чистота:95%+
Номер в каталоге:CM121882
Молекулярная масса:158.1

Упаковочная единица Доступно для заказа Цена ($) Количество
CM121882-100g in stock ňș
CM121882-500g in stock ȀňǕ

Только для использования в НИОКР..

Форма запроса

   refresh    

Информация о продукции

Номер CAS:1583-59-1
Молекулярная формула:C7H4F2O2
Точка плавления:-
Smiles-код:FC1(F)OC2=CC=CC=C2O1
Плотность:
Номер в каталоге:CM121882
Молекулярная масса:158.1
Точка кипения:
Номер Mdl:MFCD00236217
Хранение:

Category Infos

Fluorinated Compounds
Fluorine is the most electronegative element in the periodic table, and the fluorine atom has a small atomic radius, so fluorine-containing organic compounds have many wonderful properties. For example, the introduction of fluorine atoms or fluorine-containing groups into drug molecules can improve the permeability to cell membranes, metabolic stability and bioavailability; in addition, the introduction of fluorine atoms will improve the lipid solubility of the compound and promote its absorption in the body. The speed of delivery changes the physiological effect. In the field of medicinal chemistry, the introduction of fluorine atoms into organic molecules is an important direction for the development of new anticancer drugs, antitumor drugs, antiviral agents, anti-inflammatory drugs, and central nervous system drugs.
Dioxolanes
Dioxolane is a heterocyclic acetal with the formula (CH2)2O2CH2. It is related to tetrahydrofuran by exchanging an oxygen for the CH2 group. The isomer 1,2-dioxolane (in which the two oxygen centers are adjacent) is a peroxide. 1,3-Dioxolane is used as solvent and comonomer in polyacetal. The dioxolane-type and their hydrogenolysis can provide very valuable partially protected building blocks either for oligosaccharide syntheses or sugar transformations.
Lithium-ion Battery Materials
Lithium-ion batteries (Li-ion batteries) are widely used in portable electronic devices, electric vehicles, and renewable energy storage systems due to their high energy density and long cycle life. These batteries are composed of several key materials such as cathode materials, anode materials, electrolyte, separator and current collector, which enable them to operate. Other minor components in Li-ion batteries include binders, additives, and fillers, which improve electrode stability, electrolyte performance, and battery safety. Ongoing research and development focus on improving the energy density, safety, and cost-effectiveness of Li-ion batteries through advancements in materials, including the exploration of new cathode and anode materials, solid-state electrolytes, high-voltage electrolyte additives, and advanced manufacturing techniques.

Column Infos

Benzo Heterocycles
Benzoheterocycles are heterocycles which are fused with a benzene ring. Coumarone, thianaphthene, benzopyridine, isoquinoline, and dibenzopyridine all belong to this class of compounds.
Fluorinated compounds
Fluorinated compounds refers to organic or inorganic compounds containing fluorine.
Benzenes
Benzene is an important organic compound with the chemical formula C6H6, and its molecule consists of a ring of 6 carbon atoms, each with 1 hydrogen atom. Benzene is a sweet, flammable, colorless and transparent liquid with carcinogenic toxicity at room temperature, and has a strong aromatic odor. It is insoluble in water, easily soluble in organic solvents, and can also be used as an organic solvent itself. The ring system of benzene is called benzene ring, and the structure after removing one hydrogen atom from the benzene ring is called phenyl. Benzene is one of the most important basic organic chemical raw materials. Many important chemical intermediates can be derived from benzene through substitution reaction, addition reaction and benzene ring cleavage reaction.